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* Chapter 1

| INTRODUCTION
I

This report describes the details of an algorithm which allows to find an iso-surface

for a given three-dimensional property distribution. Input to the algorithm may be a

3 set of scalar values given at regularly spaced grid points. Output will be triangulated

polygonal approximation of the iso-surface for a specified property value.
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* Chapter 2

3 THE CONCEPT OF
ISO-SURFACES

I
The concept of iso-surfaces assumes that a scalar property p (for example: pres-

I sure, temperature, or magnitude of velocity) is distributed inside a three-dimensional

volume where it is continuously defined as p = p(z, y, z). For our considerations, we

assume that the volume of interest is a cuboid (a right parallelepiped) and bounded

I by rectangular faces. Therefore, the property distribution

I =p(z,y,Z)

I is defined for the given ranges of z, y, and z :

UZmim 3_ Z moz,

3 Zni. < Z <Zm.z.

Inside the volume, the scalar property p changes continuously from point to point

I and exhibits values within some problem dependent range

I7
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3 Prin !5 P5< Pines

To study the character of the three-dimensional property distribution, a constant

I property value pc can be chosen and all points exhibiting this property value Pc can

be found inside the given volume. The points of constant property value pc -an be

determined from

p(z,Y, z) - p, = 0,

U which is an implicitly defined three-dimensional surface. Such a surface is called an

iso-surface and represents the locus of all points where the property p assumes the

given constant property value p,. The geometry of an iso-surface is problem dependent

and varies from very simple shapes (for example: a plane, a sphere, or a cylinder) to

extremely complex forms. Sample iso-surfaces are illustrated in Figure 2.1. As can

1 be seen from Figure 2.1, a single iso-surface may consists of two or more unconnected

surface parts.

Note that within a given property distribution, an infinite number of iso-surfaces

U can be found, each of them characterized by a different constant property value p,.

Figures 2.1a and 2.1b illustrate two iso-surfaces for two different p, values within the

same volume.

3 For a given p,, an iso-surface exists inside a volume as long as

3Prnin :5 Pe !5 Nos

If pc is outside the range of p,. - P., then an iso-surface for the given p. cannot

be found within the given volume.
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Chapter 3

PRINCIPLES OF ALGORITHM

3.1 Numerical Definition of Property Distribu-
tion

The algorithm which is described in the following requires a numerical definition of

the property distribution p = p(z, y, z) inside a given volume. Discrete property values

i Pj,k must be provided at the intersection points of a rectangular, three-dimensional

mesh of straight lines. Figure 3.1 illustrates a volume with a sample regular grid.

The grid is defined by the arrays

H Xi, i from 1 to NX,

Yj, j from I to NY,

Zk, k fromi toNZ.

Note that this definition allows for variable spacing between the grid lines in all three

directions. The intersections of the grid lines are the grid points defined as the vectors

I~j = (X,, Yj, Zn).

I The total number of grid points NG for a given volume is

10
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Figure 3.1: Computational volume with Grid lines

NG = NX x NY x NZ.

At each of the grid points GPi,,k, the scalar property value Pjk is given. The range

of the property values for a given property distribution can be found from

PMIN = MIN (Pij,k, = 1,NX;j = I,NY;k = 1,NZ)

PMAX=MAX(Pj.&, i =1,NX;j=I,NY;k=1,NZ)

* 3.2 Subdividing the Volume into Boxes

The regular grid can be used to divide the given volume into sub-volumes. Each

sub-volume is again a cuboid or right parallelepiped and, for simplicity, will be called

I box or grid box in the following. A box extends between two consecutive grid lines in

I 11
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I Figure 3.2: Local Identification System of a Box

all three directions, i.e., a box is bounded by the six planes X = Xi and X =Xi+,

Y = Y) and Y = Y+l and Z = Zk and Z = Z + The total number of boxes NB

I inside the given volume is

SNB = (NX - 1) x (NY - 1) x (NZ- 1).

Figure 3.2 illustrates single box and introduces a local identification system for

the geometric elements of a box:

* A box is defined by the 8 vertices Vh, k = 1,8. The vertices coincide with the

I given grid points GPij,k. At each vertex Vk, the property value P is known.

* The 8 vertices form the 12 edges El, I = 1,12.

* The 12 edges define 6 rectangular faces F., m = 1,6.

* 12
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55 53

I Figure 3.3: Iso-surface patch within a Box

3.3 Box-by-Box Surface Construction

To find the iso-surface for a given constant property value Pc, a box-by-box surface

construction method is used. Each of the NB boxes is investigated individually. If

I the iso-surface intersects with single box, a patch of the iso-surface which lies inside

the box can be found as illustrated in Figure 3.3. First, the intersection points Si

(i = 1, NS) of the iso-surface with the edges of the box are found assuming a linear

distribution of the property value along each edge. Next, the intersection points Si

are connected by line segments. Each line segment lies in one of the faces of the box.

The line segments build the boundaries of the iso-surface patch inside the box and

define a closed polygon which, in general, is non-planar. As shown later, the number

of intersection points NS may vary between 3 and 12. Therefore, the shape of the

I resulting polygons may range from a simple triangle to a 12-sided polygon. In some

I 13
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i Figure 3.4: Two boxes sharing a face

I cases, more than one polygon may result from the process. All resulting polygons

can be decomposed into triangles. These triangles are used as the basic geometricI elements for the iso-surface representation.

I The entire isosurface is constructed by combining the surface patches found within

each of the NB boxes of the volume. If the iso-surface extends from one box into

I a neighboring box, the transition is always continuous: Both boxes share a common

Sface and the polygons from both boxes share the same edge lying in that face. This

is illustrated in Figure 3.4. Therefore, the sum of all polygons (or the sum of A

triangles decomposed from the polygons) represent the entire iso-surface inside the

given volume.
Not all of the NB boxes of the volume contribute to the construction of the

| 14
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I
surface. An individual box is not intersected by the iso-surface if

SPc> Pk, k =1,8

* or if

PC <Pk, k = 1,8.

I Such a box is an empty box. Moreover, the entire given volume may be empty if

I Pc > PUAX

* or

Pc < PUIN.

In this case, no iso-surface exists inside the entire volume for the given value Pc.I

I 3.4 Polygonal Approximation of Iso-surface Patch
* within a Box

Three levels of approximations are applied to the construction of iso-surface patch

inside each grid box. First, the intersection points Si are found using linear inter-

polation along each edge. Second, boundary curves of the iso-surface patch are ap-

proximated by straight lines. Finally, the iso-surface patch is approximated by sum

I of triangles.

The bilinear interpolation can be applied on a face of a box to show a part of

above approximation process. This interpolation can be used to find out traces of the

iso-surface on the face.

I 15
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Bilinear interpolation is defined by four corner points[3]

P(u,v) : P(O,0),P(O,1),P(1,0), and P(l,1)

The corner points define linear boundary curves (straight lines) for the patch which

is formed by the interpolation. Any points on the patch is linearly interpolated by

I Q(u,v) = P(O,0)(1 - u)(1 - v) + P(0,1)(1 - u)v + P(1O)u(1 - v) + P(1,1)uv

IFor one face of a box we can use the more familiar z,y and z coordinates where z

i coordinate represents the property value P at a point defined by x and y. Also, the

bilinear interpolation can be rewritten in matrix form

I( P(O,0) P(O,1)] (1-Y)]
Q(zy) =[ (1 -x)zJ]

1P(1,O0) P(1, 1) y

or
* P(O,O)

P(O,1)

QzY) = (1 - -)(1 - Y) (1 - Z) z(1 - Y) ZY P(1,1)

P(1,O)

Figure 3.5 shows one bilinear patch defined by four corner points

I p(o,o) = (0,0,5),

3 P(O,1) = (0,1,3),

P(1,0) = (1,0,2) and

I P(1,1) = (1,1,7)

We can observe that all the iso-parametric line. ( z = const. or y = const) are

straight.

* 16
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I
We rearrange it

(Po - Pc) + (-Po.o + P.o)
= (Po'o - Po,) + x(-Po.o + Po, + P,o - P,.,)

In short form

I where 

c

a=Po.o -PC

b=- Po~o+Pip

I C = Po,o - Po,i

d = -Po.o + PO,1 + P1,0 Pi,1

1 and
c+ dx #0

If

I c+ dz = 0,

then

y = oo at z = -i

I As an example, let's investigate a bilinear patch shown on Figure 3.5 where PO =

5, Po,1 = 3, P1,, = 2, and P1,1 = 7. We want to find out contour line(s) of property

value of 4. Then,I a0-"1

b =-3

c 2

I d =-7

I 18
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I 1.0.286

1

i Figure 3.6: Contour lines of a Bilinear surface patch

The contour line is defined by

Y= 2 -7z

n The contour line is shown as Figure 3.6. We can observe that the contour line is not

straight whereas the iso-parametric lines are all straight.

Another example case which shows the process of polygonal approximation is

I generated which is defined by a function

P = 0.04zy + z

I
I
I
n 19
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I Figure 3.7: Real iso-surface patch

1 within a box defined by following eight vertices

(-50,-50,-50) where P = +50

I (+50,-50,-50) where P = -150

1 (-50,+50,-50) where P = -150

(+50, +50, -50) where P = +50

I (-50,-50, +50) where P = +150

(+50,-50, +50) where P = -50

(-50,+50,+50) where P = -50

(+50, +50, +50) where P = +150

Figure 3.7 shows the box and an iso-surface of value Pc = 0 within the box. The

I iso-surface will be approximated to a sum of triangles by the algorithm developed

in this report. First, the intersection points of the iso-surface with edges of the box

will be approximated by linear interpolation along each edge. On the edge E1 (see

I20
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Figure 3.8: Approximated iso-surface patch

Figure 3.2), y = -50 and z = -50. The exact z value of the intersection point is

calculated by

1 0 = 0.04z(-50) + (-50)

3 and z -= -25

The linear interpolation gives z value of the intersection point as

Iz = -25

I The top face and bottom face have four intersection points each. By connecting these

intersecting points with straight lines, we approximate the iso-surface patch within

the box as figure 3.8. This non-planar 8-sided polygon will be divided into triangles

later.

I 21
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Chapter 4

I CLASSIFICATION OF
BOX-SURFACE

1 INTERSECTIONSI
As can be seen from Figures 3.3 and 3.8, an iso-surface may intersect a selected

box in various ways. Before an algorithm can be devised to find the boundaries of

the surface patches (in the form of non-planar polygons), the possible topologies of

i the polygons must be investigated individually.

4.1 The Total Number of Intersection Cases

The points S of the polygons are found by intersecting the iso-surface with the

edges of the box. Assuming a linear change of the property value along each edge,

the intersection point is found from

S = V, + (v - VI) x -PC (4.1)

3 where, V, and V2 denote the vertices at either end of a selected edge, P and P2 are

the corresponding properties given at V, and V2, respectively. Figure 4.1 illustrates

3 the finding of S along the edge.

1 22
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I
IPC

I I 
v

VI S V2I

I Figure 4.1: Linear interpolation along an edge

3 The different patterns of box-surface intersection are determined by the number

of edge intersections found and by the topological configuration of the intersection

I points. An edge may have no intersection point at all if

Pc>PAand Pc>P

* or

Pc < A and Pc < P

An edge may have one intersection point somewhere in the middle, may have a sin-

gle intersection point at either of both limiting vertices, or the entire edge may lie

completely on the iso-surface if PC = P = P2.

I The various edge intersections are created by different combinations of property

values at the eight vertices. As obvious from the above, only three conditions at each

vertex are significant: the property at a vertex is either grater than Pc, is less than

I 23
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Pc, or is identical with Pc. Therefore, a total of

38 = 6,561

cases are possible for a single box. Because of symmetry, many of these 6,561 cases

Ican be handled as identical patterns. Nevertheless, the number of remaining cases is

too large for the development of an effective algorithm.

4.2 Reduced Number of Intersection Cases

The possible number of box-surface intersection can be signi.icantly reduced by

Ieliminating the condition that a property at a vertex is identical with Pc. In practical

applications, the probability for an equality condition is extremely small. In the rare

case that such an equality occurs, a vertex property which is identical with Pc can

I be modified (for example, lowered) by a very small amount. The algorithm uses the

following method for a consistent property modification:

IPTOL a (Pmax - Pain) * 0.00001

c 10 * min. positive floating point value vith 4 bytes

rlmin - 1.E-37

IF (PTOL .LT. rlain) PTOL= rimin

IF ( ABS(PI-PC) .LT. PTOL) P1 - PC - 0.5*PTOL

Figure 4.2 shows a result of such modification for a vertex with four neighboring faces.

24I'
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Figure 4.2: Slight modification of property value

After this modification, only two significant conditions remain for a vertex: the

I property value is either greater than PC or is less than PC. Therefore, a total of

i 2s = 256

intersection cases remain and need to be investigated. It also can be considered as

I bit patterns of 8 bits. Each bit represents each vertex of a box and it can have two

values, 0 and 1, depending on the property values there.

4.3 Classification in Groups

A study of all the 256 cases of box-surface intersections shows that the number

of edge intersections can be used to classify the cases into nine different groups.

I Table 4.1 shows those 9 groups with their frequencies and unique patterns. 11e

minimum number of edge intersections is zero, and the maximum is twelve. Note

I2



UNo. of No. of cases No. of unique

intersections toward 256 patterns

0 2 cases I

I 2-

3 16 cases 1

I4 30Ocases 1

5 48 cases 1

6 64 cases 2

7 48 cases 2

8 30Ocases 3

I9 16 cases 3

11

I12 2 cases 4

Total 256 cases 18

Table 4.1: Grouping of Cases of box-surface intersections

I 26
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I Figure 4.3: Sample cases of Nine groups

I that cases of 1, 2, 10, and 11 edge intersections do not exist. Figure 4.3 shows sample

i cases of nine groups. All the 256 cases grouped by the number of edge intersections

are enumerated in Appendix A.

In the following, possible connecting patterns for each group are identified. One

pattern is identified as unique by its topology, i.e. number of its sides (edges) and

number of separate parts within a box. Figure 4.4 shows those unique patterns of

Seach group.

I Group 1 : No. of edge intersections = 0 ; 2 cases of the 256 cases have no edge in.

tersections. All values of 8 vertices are higher than the iso-surface value or lower

than that. One case is the dual case of the other. The bit pattern of 00000000

produces the same topological pattern with the bit pattern of 11111111. In these

cases, no surface patches or polygons exists, but it is counted as one pattern.

IU 27
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(see the following page 28.1)

I
I

I Figure 4.4: Unique patterns of iso-surface patches of 9 groups

I Group 2 : No. of edge intersections = 3 ; 16 cases of the 256 cases have 3 edge

intersections. In these cases, there is only one unique pattern. The pattern is

formed by connecting 3 edge intersections in any order. They form a triangle.

I 9 Group 3 : No. of edge intersections = 4 ; 30 cases have 4 edge intersections.

There is one unique pattern. Four edge intersections form a 4-sided polygon.

* Group 4 : No. of edge intersections = 5 ; 48 cases have 5 edge intersections.

There is only one pattern. Five edge intersections form one 5-edged polygon.

I * Group 5 : No. of edge intersections = 6 ; 64 cases have 6 edge intersections.

There are two different patterns. One of them is 6-edged single polygon. The

other pattern is made of two triangles.

I * Group 6 : No. of edge intersections = 7 ; 48 cases have 7 edge intersections.

I28
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Figure 4.4: Unique patters of Iso-surface patches of 9 groups

I
I 28.1

I
I



There are two patterns. One of them is 7-edged single polygon. The other has

one triangle and one quadrilateral.I
e Group 7 : No. of edge intersections = 8 ; 30 cases have 8 edge intersections.

There are three different patterns. One of them are 8-edged single polygon.

Another pattern has one triangle and one 5-edged polygon. Still another has

i two quadrilaterals.

i * Group 8 : No. of edge intersections = 9 ; 16 cases has 9 edge intersections.

There are three patterns. One of them is composed of 9-edged single polygon.

Another has one triangle and a 6-edged polygon. The last pattern is composed

of three triangles.

* Group 9 : No. of edge intersections = 12 ; 2 cases have 12 edge intersections.

There are four patterns. 1) Four triangles. 2) Two triangles and one 6-edged

i polygon. 3) Two 6-edged polygons. 4) One 12-edged polygon.

I
I
I
I
I
I
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i Chapter 5

3 HANDLING OF AMBIGUOUS
CASES

If any of 6 faces of a grid box has 4 edge intersections, there is no unique way of

connecting edge intersections on the face. This produces ambiguities on the algorithm.

One must find the correct way of connecting intersection points. For a face, there are

i 3 possible ways of connection. Figure 5.1 shows a face with ambiguity and possible

i connections.

One simple solution is to subdivide the domain (i.e. a box) into smaller cells until

the ambiguity is dissolved. This is called as adaptive subdivision, or tesselation. But

this method requires functional values at internal points of one grid box, which are not

directly availabe in a given discrete data set. That requires interpolation of proper

form (local or global). Also, it creates cracks on an iso-surface between different

size cells, i.e., between subdivided box and undivided box. Because straight line is

used to connect the intersection points, the side of the iso-surface patch found on the

3 smaller size box does not match with that on the bigger size box. The subdivided

box has more intersection points and they approximate the iso-surface more closely.

I Figure 5.2 shows one face shared by two boxes, one of them is subdivided into eight

I 3
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i Figure 5.1: A face with Ambiguity

smaller boxes.

Triangulation of the grid box is another solution. A triangular face can have ex-

U actly two intersections, if any. There is only one way of connecting them. Figure 5.3

shows a triangular face. In general, no ambiguities exists if a simplex is the partition-

ing cell. A simplez is the simplest linear decomposition of n-space. For 3-D space, it

i is tetrahedron. Figure 5.4 shows possible patterns within a tetrahedron. This method

requires triangulation of domain (into tetrahedra), and also requires function values

at number of internal points. Finding intersection points along edges of triangulated

cell is compuationally more expensive than along edges of box shaped cells, where

edges can be aligned with coordinate axes.

Still another solution is utilizing function values at the center of ambiguous faces.

From the fact that the iso-surface divides the higher value region from the lower value

i 31
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Figure 5.2: Cracks between different size cells

I

I 0
I
I
I

'4

I 0 0
I Figure 5.3: A triangular fa~
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I Figure 5.4: Iso-surface patterns within Tetrahedra

region, the correct way of connecting points can be determined. The function value

at the center of ambiguous face is tested against the iso-value PC. If the centroidal

value is higher than Pc, the two vertices with lower values will be isolated, vice

3 versa. Figure 5.5 shows a face with four edge intersections and the centroidal value.

This method gives the same result as when the box is subdivided into 24 tetrahedra,

I if additional information is only used to get the correct connecting information, i.e.,

I additional intersections created inside and on the box are neglected. This method still

needs function value at the centroid of the ambiguous face. Some form of interpolation

I should be applied.

Linear interpolation (specifically, mean of values of 4 vertices) is used in the im-

plementation to get the center value. It is a simplified form of the distance weigUted

interpolation. The example case shown in Figure 3.8 is constructed by using the

I

I
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I Figure 5.5: Four edge intersections and the Cetroid value

3 mean value to get the connecting information on top and bottom faces. If the mean

of property values of four vertices is used, the centroid value of the top face is higher

I than the iso-value in Figure 3.8. That of the bottom face is lower than the iso-value.

As linear interpolation is also used for finding edge intersections, it is consistent

throughout the domain. It will produce consitent results at neighboring grid boxes

I too, which share the same ambiguous face. The resulting iso-surface will be an unique

surface.

I
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* Chapter 6

I ALGORITHM FOR CREATION
* OF ISO-SURFACE PATCHES

I
An algorithm for connecting the edge intersections to construct the polygonal

iso-surface patches has been developed.

* 6.1 The Logic of the Algorithm

The algorithm treats every grid box identically. It starts from investigating each

of 6 faces of a box. For each face, the algorithm finds edge intersections, if any,

I by comparing property values at the vertices against the iso-value Pc. Then, it

establishes the connecting information among the points found on each face. If two

points are found, the connection is trivial. If four points are found, it calculates the

centroidal value to find the correct way of connecting points. Those intersection points

are saved to an array with their coordinates, face identification, edge identification,

and connecting information. The local identification system shown on Figure 3.2 is

used. Table 6.1 shows an example of the data structure of the array.

After investigating all six faces of the box, the algorithm sorts the saved edge

I intersections to construct polygons. We have the number of edge intersections with
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Edge Id Face Id Connecting edge Coordinates

I~~ __ _ _ y z

S2  E F E7

S3 Es F3  Ell

S4 El F3  EeE55 F £7
Ss Ell F4 E7

S6  E7  F4  Ell

Table 6.1: Data structure for the algorithm

their coordinates, face id's, edge id's, and connecting information on face level. But,

I each edge intersection is saved twice from the previous process because one edge is

shared by two faces. Starting from any point, it moves to the connecting point on

the same face. Then it connects the duplicated point on the same edge. It travels

I along the sides of an iso-surface patch until it returns to the strating point. If there

are points remained, not connected, it starts from one of the remainders and does

the same procedure to find another patch within the grid box. Finally the iso-surface

patches are triangulated for the rendering process. Figure 6.1 shows the sorting pro-

cess, which travels along the boundary of an iso-surface patch. The previous Table 6.1

shows the data structure after the sorting process. The algorithm in pseudo-code is

*as follows.

I
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S,3

I Figure 6. 1: Traveling along a polygon

I For all faces of one box

Find all edge intersections, if any
I Find connecting information on the face

I If 2 points : trivial

If 4 points : use function value of centroid to get connecting info.

I Save their coordinates with face id, edge id,

i and face level connecting information

Sort edge intervections to construct polygon(s)

I Triangulate each polygon found

End

I

I Procedure : Sort edge intersections to construct polygon(s)
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Start from any point

Find connecting point on the same face

Find duplicated point on the same edge

Keep going until it returns to the starting point

If there are points remained, not conected, start one of them and

I do the same work as above

* End

Observations used throughout the algorithm are summarized as follows.

i A box has 6 faces, 8 vertices, and 12 edges.

* One edge can have at most one intersection with an iso-surface. It is because

of the linear interpolation used along each edge of the grid box.

i * One face can have 0, 2, or 4 edge intersections.

* One box can have at most 12 intersections, one per 12 edges of the box.

i Within one grid box, there may be more than one patch of the iso-surface.

9 Iso-surface divides the higher value region from the lower value region. The

I surface has inside and outside information.

i Polygonal iso-surface patches are non-planar in most cases.

i 6.2 Calculation of Surface Normals

Normal vectors of surface patches are required for the rendering process such as

Gouraud shading or Phong shading. They can be calculated by taking cross product
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of edge vectors of polygonal patches which share a vertex. This method of calculating

normal vectors gives rough approximation. Average of normal vectors calculated from

all polygons sharing a vertex is usually used for the final rendering process.

Alternatively, numerical derivatives can be used, based upon the fact that the

directional derivative at a point is the normal vector of iso-surface at the point. For

I F(x, y, z) = 0 is given, VF is the normal vector at the point. The normal vector

3 (directional derivative) points toward the higher value region, so inside and outside

information of the iso-surface is available.

Gradients are estimated by central difference method. The cases where intervals

are not same has been considered. For z coordinate direction, the forward difference

is

* f(Z) f(,+) - f(Z,)
Azj

The backward difference is

fI(z) - f(z) - f(z,-1)I z

The central difference is

i f ) AfZ + tiz!

Figure 6.2 shows the process of taking the numerical gradient. The other V, z com-

3 ponents of VF can be obtained by the same procedure.

At boundaries of the computational domain, the central differences cannot be

calculated. Forward differences or backward differences are used as the normal vectors

instead. These normal vectors are then normalized against its own length to get the

unit normal vectors.
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Figure 6.2: Numerical differentiations

6.3 Implementation of the Algorithm

Hierarchical data structure is used for handling of the adjacency information of

one box. See Appendix B. Topological queries which ask neighboring faces, edges,

and vertices can be answered through this data structure.

Implementation of the algorithm is done on a Stellar GS1000 series graphics super

computer. Phigs+ implementation on the Stellar Computer, which is based on X-

window system, in used throughout as the main graphics package. Fortran77 is the

main programming language. Stellar's implementation of Phigs+ is not complete,

and its baseline graphics are X-window system written in language C, and a few C

- procedures are used too. Inter-language calling conventions for C and Fortran, which

i is set by Stellar Computer, are used.

After the polyhedral approximation of the iso-surface is constructed, rendering of

'i0

ip

i
I

11
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I
I the surface is handled by the general purpose visualization system - AVS (Application

i Visualization System) - supplied by Stellar Computer.

I
I
I
I
I
I
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m Chapter 7

I APPLICATION AND
CONCLUSION

I The developed algorithm can be used for a range of areas as long as the required

data set can be supplied. It can be used to visualize fluid flows from the result

of Computational Fluid Mechanics, Meteorological data such as clouds and storm,

USeismic data for mineral resource development, Medical imaging for human organs,

3 ... etc.

As the iso-surface has inside - outside information inheritantly, the developed al.-

m gorithm can be extended to reconstruct solid object. That is, topological neighboring

information required by a solid modeling system can be extracted through application

of the method to a regularly sampled data set. One good example is reconstruction

of a human organ from a CT (Computed Tomograph) scan data set.

Some assumptions are made in the development of the algorithm based on ob-

servations. They should be tested or proved rigorously. Those assumptions are as

m follows.

Iso-surface divide hot region (higher value region) from cool region (lower value

I region) completely. There should not be any holes on the iso-surface between above
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I
two regions, if continuity of function in the domain is assumed. At one instant of

time, the iso-surface divide the two regions like as a solid surface.

I Can the algorithm completly covers the Iso-surface ? As the method use only

local information available on one grid box, and does not consider any neighboring

information or globality, its ability to reconstruct the whole iso-surface completely

I can be suspected. Only observation which enforce the global connectivity is that two

neighboring boxes use the same information (intersection points and connection of

them). The same information is used by the neighboring box for the shared face. See

Figure 3.4

The developed algorithm is relatively simple in that only local information is used

for the construction of iso-surface. This characteristic can be used for speeding up

via parallel processing. The algorithm is also found to be robust.

I
I
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* Appendix A

I 256 cases of Box-Surface
Intersections

All the 256 cases of box-surface intersections are enumerated. They are grouped

U by the number of edge intersections.

I
I
I
I
I
I
I
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Appendix A

The following pages show all the 256 cases of box-surface intersection. The cases are

sorted by the number of edge intersections (IN) resulting in 9 different groups.

I

IExplanation:
+ indicates P > Pc at vertex

Iindicates P < Pc at vertex

* indicates edge intersection point

ID = n=bbbbbbbb

n - case ID number (between 0 and 255)

bbbbbbbb - corresponding bit pattern

IN number of edge IntersectionsI
U

Directory:I
Group IN No. of cases pages

1 0 2 A.2

2 3 16 A.3

3 4 30 A.4 - A.5

4 5 48 A.6 - A.7

5 6 64 A.8 - A.10

6 7 48 A.1I- A.12

7 8 30 A.13- A.14

8 9 16 A.15

9 12 2 A.16

I
I

I
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3 10= 0=00000000 IN= 0 I0=255=111tt111 N= 0

I
I
I
I
I
I
I
I
I
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3ID= 1-00000001 IN= 3 10- 2=000000 10 IN- 3 ID- 4=00000100 IN- 3 ID= 8=00001000 INa 3

ID- 16-00010000 IN- 3 10- 32-00100000 IN- 3 ID- 54-01000000 IN- 3 ID127-01111 111 IN= 3

3 I-128-10000000 IN- 3 ID-19101111l IN- 3 ID-223-n11011111 IN- 3 IDw239-111O011111 IN= 3

U02711~l N 0211111 N 1431110 N D241111 N

I A.3



ID= 3=00000011 IN= 4 10= 6=000001 10 IN- 4 ID= g=0000100i IN= 4 ID- 12 =00001100 IN= 4

ID= 15=00001111 IN- 4 10- 17=00010001 IN- 4 10= 34=00100010 IN- 4 ID- 48=00110000 IN- 4

10- 51-00110011 IN- 4 ID- 63-001111111 IN- 4 ID- 68-01000100 IN- 4 ID- 96-01100000 IN- 4

+ +

10-102-01100110 IN- 4 ID-111-011011111 IN- 4 ID-119=011101111 IN- 4 D-136-10001000 IN- 4

ID-144-10010000 IN- 4 ID-153-10011001 IN- 4 ID-159-10011111 IN- 4 ID-187-101I1011 IN- 4

A.4
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ID: 7=00000111 IN= 5 10= 11=00001011 IN= 5 I D= 13-00001101 I N= 5 10D= 14=0000 1110 I Na 5

I-

IID- 19=00010011 IN- 5 ID- 25=00011001 IN- 5 ID- 31=000111111 IN- 5 ID- 35-00100011 IN= 5

IS

ID- 38-00100110 IN- 5 ID- 47-00101111 IN- 5 ID- 49-00110001 IN- 5 ID- 50-00110010 IN- 5

ID- 55-00110111 IN* 5 ID- 59-00111011 IN- 5 ID- 70-010001110 IN- 5 ID- 76-01001100 IN- 5

ID- 79-01001111 IN- 5 ID- 98-01100010 IN- 5 ID-100-01100100 IN- 5 ID-103-01100111 IN- 5

U 1D-110-01101110 IN- 5 10-1 12-01110000 IN- 5 10-115-01110011 IN- 5 ID-118-01110110 IN. 5

IA
.....I..



5ID=137=10001OOI IN= 5 ID=140=iOOOitOO IN= 5 IO=143=10001111 IN= 5 10=145=10010001 IN-z 5

Im

II 521iOOIOIE-SLID-551iOO111IN I-57-O11101IN-E51-61110000IN-

ID-179-101 10011 IN- 5 10-185-10111001 IN- 5 ID-196-11000100 IN- 5 ID-200-11001000 IN-5

IO-205-iOOii1 IN- 5 ID-205-11001110 IN- 5 ID-208-t1100000 114- 5 1ID-217-1 1011001 1IN- 5

III
ID-220-11011100 IN- 5 ID-224-1t100000 IN- 5 ID-230-1l1001lO IN- 5 ID-236-11101100 IN- 5

3ID-241-11110001 IN- 5 1D-242=11110010 IN- 5 10-244-11110100 IN- 5 10=243-111110O0 IN4m 5

3 A.7
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10= 5=00000101 IN= 6 ID= 10=00001010 IN- 6 I0= 18=00010010 IN= 6 I0- 20=00010100 IN- 6

Ii

I0- 23=000101 I- ID- 24=00011000 IN- 6 ID- 27-00011011 IN- 6 I- 29-00011101 IN- 6I
I /

ID- 33-00100001 IN- 6 0- 36-00100100 IN- 6 I0- 39-00100111 IN- ID- 40-00101000 IN- 6

ID* 43-00101011 IN- 6 ID- 46-00101110 IN- 6 ID- 54-00110110 IN- 6 10- 57-00111001 INo 6

ID- 65-01000001 IN- 6 I0- 66-01000010 IN- 6 ID- 71-01000111 IN- 6 ID- 72-01001000 IN- 6

UL
10- 77-01001101 IN- 6 ID- 78-01001110 IN- 6 ID- 80-01010000 IN- 6 ID- 95-01011111 IN. s

* A.8
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10= gg=1100011 IN= 1 1I=1S0=O11O1100 IN= 6 ID=113,,01110001 IN- 6 10-114=01110010 IN= S,4
I + r

I 10-11601110100 IN- 6 I-123-Otli011 IN- 6 ID,125,0111101 IN- 6 ID-126-01111110 IN- 6I
10-129-10000001 IN- 8 10-130-10000010 IN- 6 ID-132-10000100 IN- 6 10-139-10001011 IN- 6

I+I
iD-141-10001101 IN- 6 ID-142-10001110 IN- 6 ID-147-10010011 IN- 6 ID-156-10011100 IN- 6

I ID-160-10100000 IN- S IO-175-1Oi11i1 IN- 6 ID-177-10110001 IN- 6 ID-178-10110010 IN- 6

3 10-183-10110111 IN= 6 10-184-01111000 IN- 6 10-189-10111101 IN- 6 ID-190-10111110 IN= 6

3 A.9

I



I

ID=198=11000110 IN= 6 ID=201=11001001 IN= 6 ID=209-11010001 IN= 8 10=212=11010100 IN= 8,
ID=215=101011 IN- 6 ID=216=1101000 IN- 6 10-219-11011O11 IN- 6 ID222-11011110 IN- 6

ID-226-11100010 IN- 6 ID-228-11100100 IN- 8 ID-231-11100111 IN- 6 ID-232-11101000 IN- 6

I

I
ID-235-1110OO11 IN- 6 1D-237-11101101 IN- 6 ID-245-11110101 IN- B ID-250-1111l11 IN- 6

I
I
I
1
3 A.1O
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10= 21=000i0101 IN= 7 10- 22=00010110 IN- 7 10- 28=0001110 IN= 7 ID- 41-00101001 IN= 7

ID- 42=00101010 IN- 7 I0- 44-00101 100 IN- 7 I0- 52-0011000 IN- 7 I0- 58-00111000 IN- 7

10 N-- 61-00111101 I-7ID- 62-00111110 IN- 7 10- 67-01000011 IN- 7 I0- 69-0100010l IN- 71

IID- 73-01001001 IN- 7 ID- 81-01l0l0001 IN- 7 ID- 84-01010100 IN- 7 ID- 87-01010111 IN- 7

Ix

I0- 93-01011101 IN- 7 ID- 97-01100001 IN- 7 ID-104-01101000 IN- 7 1D-107-01101011 IN- 7

TI

ID-109-O 1011101 IN- 7 ID-117-01110101 IN- 7 10=121-01111001 IN- 7 1D-124-01111100 IN- 7

A.1l
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ID=131=100000I1 IN= 7 ID=134=1OOOO11O IN= 7 10=138=10001010 IN- 7 10-146=10010010 IN= 7

+

UID=148=1001O100 IN- 7 ID-l5100iOll1 IN- 7 ID=158=I111O IN- 7 ID-162-10100010 IN- 7

I1 O16810O1O0IN- 7 1171111011 IN- 7 ID=174-10101110 IN- 7 11D=182-10110110 IN- 7j

UF

ID-186-10111010 IN- 7 ID-188-10111100 IN- 7 ID-1g3- 10000011 IN- 7 ID-124-11000010 IN- 7

1D-199-1 1000111 IN- 7 10-203-1100t011 IN- 7 10-211-1 1O OO11 IN- 7 10-213-111011011 IN- 7

1D-214-11010110 IN= 7 ID-227-11100011 IN- 7 ID-233-11101001 IN. 7 10-234=11101010 IN= 71

A.1 2
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ID- 60-00111100 IN- a ID- 75=^01001011 IN- a ID- 83=01010011 IN- 8 ID- 85-0010101 IN- S

ID- 88-01010110 IN- 8 ID- 89-01011001 IN- I ID- 92-01011100 IN- I ID-101-01100101 IN- I

IM
II

3ID-105-01101001 IN- 8 ID-10B-01101010 IN- 8 ID-120-01111000 IN- I ID-135-10000111 IN- I

ID-149-10010101 IN- 8 ID-150-10010110 IN- 8 ID-154-10011010 IN- 8 ID-163-10100011 IN- a

3 10-166-101001110 IN- I ID-169-10101001 IN- I ID=170-10101010 IN- 1 10-172-101101100 IN- I

A.13



ID=180101I10100 IN= 8 10=195=1 1000011 IN- 8 ID197uI1000i0l IN= 6 t0=202=1 00W0 IN-=

A.1



ID= 28=00011010 IN= 9 10= 37=00100101 IN- 9 ID= 74=01001010 IN= 9 ID= 82=01010010 I-9

* 4 
+

ID: SS=01011000 IN- ID 010 11-O 011~ IN- 9 ID- 94=0 101111 IN- 9 ID-122-0 1111010 IN- 9

I 
L

IID-133-10000101 IN- 9 10-151-10100001 IN- 9 ID-164-10100100 IN- 9 1D-1 67-10100111 I N- 9

ID-173-10101101 IN- 9 ID-181-10110101 IN= 9 ID-2 18-11011010 IN- 9 ID-229-11100101 IN- 9

A.15
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ID= 90=01011010 IN=12 I0=165=101001Ot IN=12

I
U
I
U
I
I
I
U
I
U
I
I
I
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II Appendix B

I Hierarchical Data Structure
I

Several different data structures are being used to represent topologi al neighbor-

ing relationship in the boundary representation of Solid modeling systems. To supply

3 the adjacency information within a box, the simple Hierarchical data structure is

used in the algorithm. For a given edge, as an example, the algorithm requires the

I information of two faces which share the edge, and two vertices which are limiting

3 the edge.

The Hierarchical data structure treats al the faces of the polyhedra as roots. Fur-

3 thermore, each face has information of surrounding edges. Each edge has information

of two bounding vertices as its children. The structure is composed of 2 tables, Face-

UEdge Table (FET) and Edge-Vertex Table (EVT). Figure B.1 shows those relations,

I where following definitions are used.

I * F : face

* E :edge

* V vertex

* nf: total no. of faces

I 48
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iV F-F _t tabe(E.) ..Vtale (EL L)

El E2. . . Enfe VI V2
iF1 El

E F

nfe FnE

I

3 Figure B.1: Relationships in the Hierarchical Data Structure

I * ne: total no. of edges

3 o nv : total no. of vertices

i nee: no. of adjacent edges, given E

i nvv: no. of adjacent vertices, given V

Snve: no. of adjacent edges, given V

e nvf: no. of adjacent faces, given V

* nfe: no. of adjacent edges, given F

e • nfv: no. of adjacent vertices, given F

3 * nfl: no. of adjacent faces, given F

* 49
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Generally, the data structure will be used to answer the following 9 topological queries

o Ti : Given V, find all nvv vertices around V

* T2 : Given V, find all nvc edges around V

o T3 : Given V, find all nvf faces around V

o T4 : Given E, find 2 vertices connected by E

o T5 : Given E, find all nee edges around E

i T6: Given E, find 2 faces that meet at E

* T7: Given F, find all nfv vertices around F

I
o T8 : Given F, find all nfe edges around F

1 * T9 : Given F, find all aft" faces around F

I For a box, the Hierarchical data structure has a fixed form. If we use the local

identification system of Figure 3.2, the two tables have the form as Table B.1 and

Table B.2.

Another table is created to get the grid position from the base vertex which is the

grid point with the lowest (ij, k) tuple within the box. The table has the differences

of grid positions between each vertex and the base vertex. Table B.3 shows the

3 relation.

l
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m

m E E 2 E 3 E 4

F, 1  2 3 4

F2  1 9 5 10

F3  2 11 6 10

F4  3 12 7 11

Fs 4 9 8 12

Fs 5 6 7 8

Table B.1: Face-Edge Table

I
I
I
I
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A 1 2

AE4 41

£A 5 6

A 6 7

E7 7 8

Elo 2 6

£ 12 4 8

Table B.2: Edge-Vertex Table
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AiIjA
I,0

V 0 001

V 1 001

IV 7 II1
V 0 1 1

Table B.3: Vertex Difference Table
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